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between APW and LCAO Compton profiles and 
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Department of Physics, University of Warwick, Coventry CV4 7AL, UK 

Received 26 May 1989, in final form 17 July 1989 

Abstract. The formulation of an exchange and correlation correction based on that proposed 
by Lam and Platzman to theoretical Compton profiles calculated within the local-density 
approximation is described. This correction is evaluated for AI, Fe, Cr, Ni and V and 
compared with the differences between existing APW and LCAO calculations and experiment. 
Improved agreement between the corrected theoretical data and measured profiles is 
observed for both models. The APW method is found to be somewhat more successful in the 
formulation of electron momentum densities for good free-electron and transition-metal 
elements. 

1. Introduction 

In recent momentum density studies the occupation numbers of the high-order momen- 
tum states calculated within the local-density approximation (LDA) have consistently 
produced underestimates compared to those deduced from Compton scattering experi- 
ments; see for example, Rollason et a1 (1987) on nickel, Cardwell et a1 (1989) on 
chromium and Cooper (1985) or Williams (1977) for general reviews. In consequence 
poor agreement has been observed between the individual measured and calculated 
Compton profiles J(p , ) .  This quantity is the one-dimensional projection of the momen- 
tum density n(p) along a specific crystallographic direction labelled z in equation (1): 

In particular, theoretical profiles have overestimated significantly the observed peak 
height. This discrepancy has been attributed to the neglect of exchange and correlation 
effects in the theoretical data. Since the effect of exchange and correlation on calculated 
Compton profiles is to promote electrons from low- to high-momentum states, the 
band theories that omit this consideration in their formulation of momentum density 
underestimate the width of the Compton profile and overestimate the peak height J ( O ) ,  
because of the normalisation condition J2 J ( p , )  dp,  = N ,  the number of electrons per 
atom. 
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This paper evaluates an exchange and correlation correction reported by Lam and 
Platzman (1974) and compares its results with the differences between published exper- 
imental and theoretical Compton profiles for several metals. This substantially resolves 
the residual discrepancies outlined above and facilitates a critical assessment of Compton 
profiles calculated within the L.DA. 

2. Density functional theory 

The momentum density, n ( p ) ,  for interacting electrons in the Hartree-Fock approach 
is derived from the Fourier transform of the real-space one-electron wavefunctions, 
vi(r), i.e. 

N 

where (pi represents a plane-wave state and the sum is over all the electrons. The 
Compton profile is then obtained from the n ( p )  according to equation (1). Various band 
calculations have been applied to model n ( p )  for many elements and compounds. Of 
these perhaps the most appropriate is that based on density functional theory (DFT; see 
Hohenberg and Kohn 1964). DTF is an exact ground-state formulation for the treatment 
of an inhomogeneous, interacting electronic distribution and is therefore applicable to 
Compton scattering studies of the ground-state momentum density. 

In formulating the real-space ground-state wavefunction, DTF assumes that the total 
ground-state energy, which can be written as a unique functional of the charge density, 
may be expressed as a sum of the kinetic, E& , and Hartree, , energies (the latter 
describing the classical electrostatic interaction amongst the conduction electrons and 
between the conduction electrons and the core) of a particular electronic system, plus 
whatever is left over, i.e. 

Here is, by definition, the exchange and correlation energy describing the spin- 
dependent interactions between electrons in the distribution. The exchange interaction, 
which arises as a consequence of the Pauli exclusion principle, is included in the Hartree- 
Fock method (see Fock 1930a, b). Correlation, on the other hand, is a collective term 
used to describe the spin-dependent interactions not included in the Hartree-Fock 
formulation (such as the interaction between electrons of anti-parallel spin, for 
example). The effects of exchange and correlation are incorporated in DFT by modi- 
fication of the usual Hartree potential, VM(r)l, in which case the effective potential, 
Veff [ p ( r ) l  corresponding to a total energy E,p(rll can be written as 

where Vt& represents the exchange-correlation potential and VE(.)] is of the usual 
form, i.e. 

V(r) is the external lattice potential. Minimisation of the total energy with respect to the 
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charge density, p( r ) ,  then yields the self-consistent Kohn-Sham equations (see Kohn 
and Sham 1965) which may be written in the form 

[ -V2  - V${r)l(r)I ~ i ( r >  = & i ~ i ( r ) .  ( 6 )  
It should be noted, however, that the minimisation procedure used to derive equation 

( 6 )  is only defined for the ground-state energy and the charge density. Thus the set of 
orthonormal functions {Ilfi(r)} do not correspond explicitly to the individual electron 
wavefunctions. 

To extend DTF further it is necessary to relate the exchange-correlation energy to 
VKr)]. This is achieved from the minimisation procedure employed to derive the Kohn- 
Sham equations and yields the following expression: 

VEr)j = a E $ ~ r l ~ / a ~ ( ~ I ~  (17 )  
Hence VErl1 corresponds to the functional derivative of the exchange-correlation 

energy, from which the exchange-correlation term in the Kohn-Sham equation can be 
fully determined. 

2.1. The local-density approximation 

The residual problem with DFT is that the total exchange and correlation energy is not 
known explicitly and must therefore be approximated. This model-dependent quantity 
is the only approximation made in the Kohn-Sham formalism and its evaluation is 
central to the development of DFT. 

Approximations to EEr l j  are usually made within the local-density approximation 
(LDA) such that 

where E;,, is the contribution of exchange and correlation to the total energy per particle 
in a homogeneous, interacting electron gas of constant density po. 

The LDA assumes that E&, consists of a sum of the individual contributions, E ; , ,  , 
over the spatial extent of the inhomogeneous gas and determines each one by treating 
the distribution as if it were locally uniform. To calculate these contributions it is 
convenient to parametrise the electron density such that po = 3/4nr: where rs is the 
mean electron radius (i.e. the Wigner radius) and this uniquely determines the properties 
of the homogeneous electron gas. Observing that E!& assumes its maximum value in the 
low-density limit, an analytic fit to the exchange and correlation energy has been made 
by Gunnarson and Lundqvist (1976). Their fit is determined uniquely by r,, which is 
consistent with the development of DFT, and has been applied successfully to a variety 
of electron distributions (see Lundqvist and March 1983). 

Within the LDA the solutions to the Kohn-Sham equations would be exact when 
applied to a uniform electron gas if can be deduced. In practice, therefore, the 
applicability of the LDA to real systems appears to be confined to distributions where the 
electron density is relatively slowly varying (i.e. those in which the range of VKr,, is 
small compared with r J .  The local approximation, however, has been found to represent 
accurately electron distributions where p(r )  varies rapidly, for example over the region 
of an atomic core. This can be explained by the observation of Lundqvist and March 
(1983) that the contribution of exchange to the total energy of an electronic system is in 
general dominant over that of correlation. The same authors also showed that the range 
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of the exchange-correlation hole calculated via the LDA is similar to its true value. The 
exchange-correlation energy, therefore, is relatively insensitive to variations in charge 
density. 

The most important feature of the local-density approximation with regard to 
momentum density studies, however, is that the effects of exchange and correlation on 
the Compton profile may be described by a correction term which may be simply added 
to the results of a given band calculation provided the local potential is known. This will 
be shown in the following section. 

2.2. The Lam-Platzman correction 

The charge density p(r )  can be deduced accurately and directly within the DFT for- 
mulation. However, the procedure for the deduction of the ground-state momentum 
density from the Kohn-Sham solutions is not so straightforward. For non-interacting or 
interacting electron distributions in the Hartree-Fock approximations, respectively, it 
can be shown that (see Lundqvist and March 1983) 

N 

.(PI = I(PIxi(P))12 (9) 
i =  1 

where x i ( p )  are the Fourier transforms of the real-space one-electron wavefunctions. 
By application of Feynman's theorem, Lam and Platzman (1974) showed that, for 
the transformed solutions to the Kohn-Sham equations, x i ( p ) ,  equation (9) becomes 
modified by the addition of an extra term, i.e. 

where the correction term is given by the derivative of the total exchange-correlation 
energy with respect to the individual electron energies arising from correlations between 
the states lxi(p)). In the LDA this term becomes 

for which Lam and Platzman proposed the following ansatz: 

where the bracketed term represents the difference between the homogeneous-inter- 
acting and the free-electron gas momentum densities, defined by the local potential p(r) .  

Both nFp(r)l and nfp(,)] are necessarily normalised to one electron. For a one-dimen- 
sional momentum distribution (i.e. the Compton profile) this reduces to 

This is the Lam-Platzman correction term which describes the effect of exchange and 
correlation on the Compton profile. Furthermore, since it is modelled within the LDA, 
it is necessarily isotropic. For Compton profiles calculated from the wavefunction set 
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ki(p)}, this correction describes the adjustment necessary for the physical interpretation 
of the momentum distribution within the LDA, provided the charge density employed is 
common to both terms in equation (10). 

3. Calculation of the Lam-Platzman correction 

Accurate determination of the momentum-space occupation numbers corre- 
sponding to the quasi-particle properties of a homogeneous, interacting electron gas 
requires the evaluation of the electron self-energy as a function of wavevector (see 
Lundqvist 1968). From this the single-particle spectral weight function, commonly used 
to describe the plasmon spectra of an electron gas (see Lundqvist 1967), can be obtained 
and integrated with respect to energy to yield n(k ) .  This calculation is greatly simplified 
by the assumption of the random-phase approximation (RPA), in which each Fourier 
component of the effective potential can be treated independently-see Lundqvist 
(1968). It is difficult to identify the extent to which two existing calculations of the 
momentum density of a homogeneous interacting electron gas agree since only graphical 
data are available in each case (see Daniel and Vosko 1960, Lundqvist 1968). The two 
calculations appear to differ by up to -3.5% at the extremes of n ( p )  (i.e. at p / p F  = 0 
and -1.4, although good agreement is observed at p - p F ,  where pF is the Fermi 
momentum of the interacting electron gas). Bauer and Schneider (1983a), however, 
have pointed out that the Lundqvist occupation numbers are the more reliable of the 
two since those of Daniel and Vosko are calculated only to first order in the Hamiltonian. 
Consequently only the results at p - p F  in the latter calculation are used in the mo- 
mentum-density model presented here. 

3.1. Momentum-density model 

An analytic fit to the results of Lundqvist (1968) has been made in preference to an 
interpolation of the graphical data. The advantage of this method is that the conduction- 
electron contribution to AJ\$)$ can be calculated directly for any value of rs.  

- Jf,,,,,, was made by Rennert (1981). This fit has been 
subsequently modified according to the following equations: 

The first analytic fit to 

(14) 
n ( p )  = 1 - a,,p2 - S(1 - p )  

- a p o ( b p o  -p)’/(bpn - 

for P <PF 

forp’PF - 

where 

apn = 1 . 7 ~ ~ ~ ”  = 1.7/n2kF. 

b,,,, is the point at which n ( p )  drops to zero and is a functional of the charge density. This 
parameter is determined by the following normalisation condition: 

6 corresponds to the deviation of the momentum density from unity at p = 0 for non- 
zero values of rs and is obtained from the Lundqvist data; a,, , and hence bp,, via equations 
(14) and (15), are calculated from the interstitial electron data of Moruzzi et a1 (1978). 
Together these parameters completely characterise the momentum distribution. The 
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Table 1. Characteristic parameters of the momentum density for varying amounts of cor- 
relation, rs ,  calculated analytically with the delta approximation (equation (14)). The point 
at which the distribution intersects thep,  axis, b,, is dependent on the degree of correlation 
and is invariably greater than that calculated by Rennert (1981) which is fixed at 1.4760. 

1 .o 1.9192 0.0280 0.0110 1.5128 
2.0 0.9596 0.0560 0.0220 1.5128 
3.0 0.6397 0.0839 0.0390 1.5914 
4.0 0.4798 0.1119 0.0560 1.5227 
5.0 0.3838 0.1399 0.0720 1.5240 
6.0 0.3199 0.1679 0.0864 1.5240 

Momentum density (units o f  p , / p , )  

Figure 1. The momentum density in units 
of p/pF calculated for r, = 2 , 4  and 6 from 
the analytic fit described by equations (14) 
and (15). The full circles correspond to 
n(p)  for r, = 4 and are derived from the 
full self-energy calculation of Lundqvist 
(1968). 

values of a p o ,  bpo  , 6 and pF for the first six integral values of rs are presented in table 1 
and the corresponding momentum densities for r, = 2 ,4  and 6 A are plotted in figure 1. 
The full circles represent the Lundqvist data for rs = 4 which are in good agreement with 
the modelled distribution. 

The input data for the Lam-Platzman correction were obtained by subtracting the 
free-electron Compton profile, which takes the form of an inverted parabola, from that 
derived from equation (14). Since both the interacting and free-electron Compton 
profiles were normalised to unity, the resulting difference haszero area in all calculations. 

The input parameters required to calculate the Lam-Platzman correction for both 
core and conduction electrons are all taken from the tabulated data of Moruzzi et a1 
(1978). The contributions to A.Tb?$ were calculated from the total electron density in 
the core region and the interstitial region and then summed. To simplify the calculation 
over the muffin-tin region, where the electrons are tightly bound, the contribution to 
the correction from each point in the core charge density was obtained by interpolating 
between r y  and 0 (i.e. the free-electron limit). Hence the input Jh,,(,](q) - Jf,pcl,l(q) 
appropriate to the core electrons was calculated for the spherically symmetric core- 
electron distribution of minimum charge density, i.e. the point at which the effects of 
exchange and correlation are the most significant. The determination of IFax  therefore 
formed the basis of the calculations of the core contribution to AJh?;. 
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Table 2. Input parameters for the Lam-Platzman correction for AI, V ,  Cr ,  Fe and Ni 

Intersitital Muffin-tin 
a. rs p F  electrons radius 

Element Z Structure (au) (au) (au) peratom (au) 

Aluminium 13 FCC 7.60 2.11 0.906 0.716 2.687 
Vanadium 23 BCC 5.54 1.80 1.064 1.106 1.959 
Chromium 24 BCC 5.30 1.71 1.121 1.134 1.874 
Iron 26 BCC 5.15 1.71 1.123 1.044 1.821 
Nickel 28 FCC 6.55 1.83 1.051 0.715 2.316 

The conduction-electron contribution to the Lam-Platzman correction was cal- 
culated assuming the interstitial charge density to be constant. Consequently the input 
for the difference profile did not vary with r and was deduced for the exact conduction- 
electron charge density, po, according to the structure and valency of the element. 

The input parameters for the Lam-Platzman correction of Al, V, Cr, Fe and Ni are 
given in table 2. 

4. Results and discussion 

4.1. The form of the correction 

The results of the calculations are listed in table 3. The form of the correction in each 
case consists of a negative region in the vicinity of the origin, a sharp peak near the Fermi 
momentum and a high-momentum tail. It can be seen from figure 2, which compares 
the input profile difference calculated from the free-electron data in Morruzi et a1 (1978) 
with the Lam-Platzman corrections for aluminium, that the shape of AJRA is similar 
to J~,,,,,l - Jfp,,,l but is of greater magnitude at all points of the distribution. This is 
because the input difference is normalised to one electron and becomes magnified when 
integrated over the unit cell. The high-momentum tail is an exclusive feature of the 
core-electron distribution and arises as a consequence of the large Fermi momentum 
associated with the high charge density at low r (see Moruzzi et aE 1978). 

Since the Lam-Platzman correction includes the core and conduction-electron con- 
tributions, it is difficult to relate a general trend in the above features to a specific input 
parameter. It is apparent, however, that themagnitude of AI/$$, at the originisinversely 
proportional to the average charge density of the core. For metals such as aluminium, 
therefore, where the core charge density at high r is relatively low, the resultant cor- 
rection exhibits a large dip at the origin which is consistent with the association of high 
exchange and correlation effects with low electron densities. 

The conduction-electron contribution to AJbTA varies typically from -25% at the 
origin to -40% at p - p F .  This is because a unique Fermi momentum is associated with 
the conduction-electron gas (of assumed constant charge density) and this gives rise to 
a strong positive peak a t p  c- p F .  The core charge density, on the other hand, varies over 
the muffin-tin region with successive points in r space corresponding to different values 
of Fermi momenta for the equivalent electron gas. In essence the high- and low- 
momentum features of the Lam-Platzman correction are dominated by the core charge 
density, whereas the intermediate form of AJ/$$ is determined to a greater extent by 
the distribution of the conduction electrons. 
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Table 3. The unconvolved Lam-Platzman correction for aluminium, vanadium, chromium, 
iron and nickel. 

PI 
( 4  AI V Cr Fe Ni 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 
6.0 
7.0 

10.0 

-0.098 
-0.098 
-0.096 
-0.091 
-0.083 
-0.069 
-0.047 
-0.013 

0.038 
0.110 
0.111 
0.060 
0.025 
0.006 
0.002 
0.001 
0.000 
0.001 
0.001 
0.003 
0.004 
0.004 
0.004 
0.004 
0.003 
0.001 
0.000 

-0.084 
-0.084 
-0.083 
-0.081 
-0.077 
-0.071 
-0.062 
-0.048 
-0.029 
-0.001 

0.037 
0.067 
0.048 
0.030 
0.018 
0.011 
0.009 
0.008 
0.009 
0.011 
0.012 
0.011 
0.007 
0.002 
0.001 
0.001 
0.001 

-0.074 
-0.074 
-0.073 
-0.071 
-0.069 
-0.064 
-0.058 
-0.048 
-0.034 
-0.015 

0.012 
0.046 
0.053 
0.038 
0.024 
0.015 
0.010 
0.008 
0.007 
0.009 
0.010 
0.010 
0.009 
0.003 
0.001 
0.001 
0.001 

-0.070 
-0.070 
-0.069 
-0.068 
-0.065 
-0.061 
-0.056 
-0.047 
-0.035 
-0.017 

0.006 
0.047 
0.046 
0.034 
0.022 
0.014 
0.009 
0.006 
0.006 
0.007 
0.008 
0.009 
0.008 
0.006 
0.002 
0.001 
0.001 

-0.075 
-0.075 
-0.074 
-0.072 
-0.069 
-0.065 
-0.057 
-0.046 
-0.031 
-0.009 

0.020 
0.043 
0.037 
0.024 
0.015 
0.009 
0.006 
0.005 
0.005 
0.005 
0.006 
0.007 
0.008 
0.007 
0.004 
0.001 
0.001 

4.2 .  Comparison with previous calculations and experiments 

The application of the Lam-Platzman correction to the results of DFT calculations always 
results in a shift of electron density from low to high momenta. The extent of this shift 
reflects the degree to which the core and conduction electrons are correlated. In addition 
to the results presented here, this has also been observed in a study of copper by Bauer 
and Schneider (1983b) and in a study of nickel by Rollason et a1 (1987). 

Those earlier calculations of the Lam-Platzman term are less accurate than the 
results presented here. This is because former authors calculated the correction term 
from a single input for J h [ p ( r ( ]  - J f [ p ( r ) ]  corresponding to the Lundqvist occupation 
numbers for r,  = 2. Subsequent interpolation of these data for 2 < r, < 0 over both 
the core and conduction-electron regions introduced discrepancies. Consequently a 
difference of -0.3% J ( 0 )  at the origin and -0.2% J ( 0 )  at p - 1 au for the nickel 
correction is observed between the present Lam-Platzman correction and that derived 
by Rollason et al. At the other points in A J K $ ,  however, good agreement is observed 
between the two calculations. 

Figure 3 shows the difference between APW (Wakoh et a1 1976) and LCAO (Rath et a1 
1973) theory and experiment for the nearest-neighbour directional Compton profiles of 
(a)  iron (see Rollason et a1 1983a), ( b )  vanadium (Rollason et a1 1983b), ( c )  nickel 
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0 . 0 5  

7 

0.10 - 

0 . 0 5 -  

J 
2 4 6 8 a 0  

Figure 2. The Lam-Platzman correction for aluminium (full curve). The full circles show the 
change in the Compton lineshape of aluminium when interactions are introduced into a 
homogeneous electron gas, i.e. J&,,,, - J;,,,,, derived from the analytical fit of Rennert (1981) 
discussed in P 3.1, using the parameters listed in tables 1 and 2. The magnitude of the 
correction should be compared with a peak height of 4 electrons per au at the origin. 

*,.. 0 . .  ..".. - 0 . 1  
e.... .* - 0 . 1  - 

-0 2 

-0 .1  

> a 
0 

- 0 1  

- 0.051 1 

Figure 3. Theory minus experiment for the nearest-neighbour Compton profiles of ( a )  iron 
[ l l l ]  (Rollason etal  1983a), ( b )  vanadium [ I l l ]  (Rollason etal  1983b), (c) nickel [I101 (see 
Rollason et a1 1987), ( d )  chromium [ l l l ]  (Cardwell et a1 1989) and ( e )  aluminium [I101 
(Cardwell and Cooper 1986). In each case the full and open circles correspond to the results 
of the APW and LCAO band calculations, respectively. The full curve represents the inverted 
Lam-Platzman correction convolutedwith agaussian Of FWHM 0.4 au. It should be subtracted 
from the difference data, i.e. this curve would fit the data curves if agreement were perfect. 
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(Rollason et a1 1987), ( d )  chromium (Cardwell er a1 1989) and ( e )  aluminium (Cardwell 
and Cooper 1986). The appropriate Lam-Platzman correction, convoluted with a gaus- 
sian of FWHM 0.4 auto represent the instrumental response function, is shown in each case 
by the full curve. In this figure the correction has been inverted for ease of comparison. It 
has not been applied to the difference data directly since the potential employed in their 
construction is not identical to that used in the band calculations. 

4.3. Apwand LCAomodels 

A complicating problem with the existing APW band calculations is that their predicted 
Compton profiles are deficient in electron density. This discrepancy, which arises 
because J ( p )  is deduced by integrating n(p) over a limited momentum range in these 
particular studies, is manifest predominantly at high-momentum states. Hence the 
conduction-electron contribution to the Compton profile is restricted typically to values 
of momentum less than 10au in the APW data discussed here. This problem is less 
significant for aluminium, because the conduction electrons have a lower occupation 
density of the higher-order momentum states than for the 3d transitior, meta!s. In the 
latter it amounts to a deficit in the area under the Compton profiles of approximately 
0.2 electrons. 

The APW calculations all employed a core charge density derived from a DFT for- 
mulation. Since a similar p ( r )  was used in calculating the Lam-Platzman term, a signifi- 
cant improvement in the agreement between experiment and theory for all the APW 
difference data shown is observed. This is evidenced by the fact that the corrections 
plotted in figure 3 mimic very closely the differences between experiment and theory at 
low-momentum values where the correction term is most significant. In addition the sign 
of the correction is in good agreement with the ‘APW - experiment’ difference curves 
over the entire momentum range for all the elements shown. This suggests that the APU’ 
method is particularly appropriate for the calculation of the momentum density of both 
good free-electron and transition-metal elements. 

The LCAO method uses trial wavefunctions more appropriate to core-electron states 
and its prediction of the Compton profiles of metals is slightly less successful than its 
application to localised systems. This is apparent in the data shown in figure 3 where, 
with the exception of V, the differences between experiment and theory are greater than 
those observed for the APW curves at low momenta. In addition, the sign of the correction 
does not follow that of the ‘LCAO - experiment’ curves as well as it does in the case of the 
APW data. The errors associated with the data are too large to discriminate conclusively 
between the two models, but the APW model is slightly favoured. 

Both APW and LCAO theory minus experiment difference curves exhibit oscillations 
in the data after the correction has been applied. It has been shown in the case of copper 
and chromium (see Bauer and Schneider (1983b) and Cardwell (1987) respectively) that 
these occur with the frequency of the reciprocal lattice. Since this corresponds to a build- 
up in momentum density at points around the primary and secondary Fermi surfaces, 
the isotropic Lam-Platzman correction cannot account for their presence. A method 
of modelling a directional correlation correction has been proposed by Wakoh and 
Matsumoto (1989) who have applied it successfully to chromium (see Cardwell et a1 
1989). The formulation of a directional correction, based on the local-density approxi- 
mation, will be the subject of a future publication. 

In conclusion it is evident that the agreement between experiment and theory for 
APW- and LcAo-based band calculations can be improved significantly by inclusion of 
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exchange and correlation effects in the latter. The resulting agreement between APW 
results and experiment is marginally better than for LCAO. Agreement between the 
predictions of theory and experimental results has, for the first time, been observed 
consistently at low values of momentum. Thus the problem associated with determining 
momentum densities from the solutions of the Kohn-Sham equations appears to have 
been overcome by the application to theoretical data of an independently formulated 
Lam-Platzman correction. This provides an improved basis for assessing the relative 
merits of various band techniques in Compton scattering experiments. 

Acknowledgments 

We would like to acknowledge the many informative and invaluable discussions with Dr 
A J Rollason, Dr D Laundy, Dr J B Staunton and Professor S Wakoh throughout this 
period of research. In addition we are grateful to the SERC for the provision of a research 
studentship (DAC) during the tenure of which this research was conducted. 

References 

Bauer G E W and Schneider J R 1983a Solid State Commun. B 47 673 

Cardwell D A 1987 PhD Thesis University of Warwick 
Cardwell D A and Cooper M J 1986 Phil. Mag. B 54 37 
Cardwell D A, Cooper M J and Wakoh S 1989 J .  Phys.: Cond. Matter 1541 
Cooper M J 1985 Rep. Prog. Phys. 48 415 
Daniel E and Vosko S H 1960 Phys. Reu. 20 2041 
Fock V Z 1930a Z.  Phys. 61 126 

Gunnarson 0 and Lundqvist B L 1976 Phys. Reu. B 13 4274 
Hohenberg P and Kohn W 1964 Phys. Reo. 136 B864 
Kohn W and Sham L J 1965 Phys. Reu. A 140 1133 
Kubo Y, Wakoh S and Yamashita J 1976 J .  Phys. Soc. Japan. 41 830 
Lam Land Platzman P 1974 Phys. Reu. B 9 5122 
Lundqvist B I 1967 Phys. Kondens. Materie 6 193,206 
- 1968 Phys. Kondens. Materie 7 117 
Lundqvist S and March N H (ed.) 1983 Theory o f the  Inhomogeneous Electron Gas (New York: Plenum) 
Matsumoto M 1989 private communication 
Moruzzi V L, Williams A R and Janak J F 1978 Calculated Electronic Properties of Metals (New York: 

Rath J ,  Wang C S, Tawil R A and Callaway J 1973 Phys. Reu. B 8 5139 
Rennert P 1981 Phys. Status Solidi b 105 567 
Rollason A J ,  Holt R S and Cooper M J 1983a J .  Phys. F: Met. Phys. 13 1807 
- 
Rollason A J ,  Schneider J ,  Laundy D, Holt R S and Cooper M J 1987 J .  Phys. F: Met. Phys. 17 1105 
Wakoh S and Kubo Y 1977 J .  Magn. Magn. Mater. 5 202 
Wakoh S,  Kubo Y and Yamashita J 1976 J .  Phys. Soc. Japan 40 1043 
Wakoh S and Matsumoto M 1989 J .  Phy.s.; Condens. Matter 1 at press 
Williams B G (ed.) 1987 Compton Scattering (London: McGraw-Hill) 

- 1983b Z.  Phys. B 54 17 

- 1930b Z. Phys. 62 795 

Pergamon) 

1983b Phil. Mag. B 47 51 


